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Introduction to 2k Factorial Design

By a factorial design, we mean that in each complete replication
of the experiment all possible combinations of the levels of the
factors are investigated.
I 2k Factorial Design is special case of the general factorial

design with k factors, all at 2 levels.
I The two levels are usually called low (-) and high (+).
I 2k Factorial Design is widely used in industrial

experimentation, especially in the early stages of
experimental work, when many factors are likely to be
investigated.
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Introduction to 2k Factorial Design

Factors could be
I quantitative

(such as two values of temperature, pressure, time, ...)

I qualitative
(two operators, ♂ and ♀, presence and absence, ...)

and it is assumed that response is approximately linear over the
range chosen.

We assume that
I factors are fixed,
I the design is completely randomized,
I the usual normality assumptions are satisfied.
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Introduction to 2k Factorial Design

The analysis procedure for a Factorial Design includes:

I Estimation of factor effects.
I Model formulation.
I Statistical testing (ANOVA).
I Refine the model.
I Analyze residuals (graphical).
I Interpret results.
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The 22 Design - Chemical process example

The 22 Design is the simplest case. In this example we consider an investiga-
tion into the effect of the concentration of the reactant and the amount of the
catalyst on converision in a chemical process.

I factor A - reactant concentration
I factor B - catalyst amount
I response y - recovery

The goal is to determine if adjustments to these factors would increase yield.
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Treatment combinations in the Chemical process example of 22 design

I Low (-) and high (+)
levels of a factor are
arbitrary terms.

I The high level of any
factor in the treatment
combination is denoted
by the corresponding
lowercase letter.

I (1) is used to denote both
factors at the low level.
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The 22 Design - Estimation of factor effects

The symbols (1), a, b, and ab represents the total of all n replicates taken at
the treatment combinations.

main effect of A: A = 1
2n (ab + a − b − (1)) = ȳA+ − ȳA−

main effect of B: B = 1
2n (ab − a + b − (1)) = ȳB+ − ȳB−

interaction effect of AB: AB = 1
2n (ab − a − b + (1))

Where the interaction effect AB is defined as the average difference between
the effect of A at high level of B and the effect of A at the low level of B.
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The 22 Design - Chemical process example

The estimation of average effects in chemical process example is:

main effect of A A = 1
2×3 (90 + 100 − 60 − 80) = 8.33

main effect of B B = 1
2×3 (90 + 60 − 100 − 80) = 5.00

interaction effect of AB AB = 1
2×3 (90 + 80 − 100 − 60) = 1.67

Faster manually calculating of sum of squares: SSA =
[Contrast2

A]

N .

SSA = 1
12 (90 + 100 − 60 − 80)2 = 208.33

SSB = 1
12 (90 + 60 − 100 − 80)2 = 75.00

SSAB = 1
12 (90 + 80 − 100 − 60)2 = 8.33

SST =
∑2

i=1

∑2
j=1

∑n
k=1 y2

ijk − y2
...
N = 323.00

SSE = SST − SSA − SSB − SSAB = 31.33
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The 22 Design - Chemical process example
The Analysis of Variance for the Chemical process example, model with inter-
action effect:

> summary(yield.aov1 <- aov(yield~reactant*catalyst))
Df Sum Sq Mean Sq F value Pr(>F)

reactant 1 208.33 208.33 53.191 8.44e-05 ***
catalyst 1 75.00 75.00 19.149 0.00236 **
reactant:catalyst 1 8.33 8.33 2.128 0.18278
Residuals 8 31.33 3.92
---------
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Notice (Notation in R):

Y ∼ X response variable Y is is modeled as a function of predictor X .

+X add (include) another explanatory variable X .

−X delete (exclude) variable X .

X : Z include the interaction between explanatory variables X and Z .

* include the explanatory variables X , Z , and the interactions between
them.
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The 22 Design - Chemical process example
The Analysis of Variance for the Chemical process example, model without
interaction effect:

> summary(yield.aov2 <- aov(yield~reactant+catalyst))
Df Sum Sq Mean Sq F value Pr(>F)

reactant 1 208.33 208.33 47.27 7.27e-05 ***
catalyst 1 75.00 75.00 17.02 0.00258 **
Residuals 9 39.67 4.41

> anova(yield.aov2,yield.aov1)
Analysis of Variance Table

Model 1: yield ~ reactant + catalyst
Model 2: yield ~ reactant * catalyst

Res.Df RSS Df Sum of Sq F Pr(>F)
1 9 39.667
2 8 31.333 1 8.3333 2.1277 0.1828

---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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The 22 Design - Chemical process example

The summary of linear regression model with coded variables xi = ±1.
In our example x1 = +1, if concentration is at the high level and −1 if concen-
tration is at the low level. Other variables in the same way.

y = β0 + β1x1 + β2x2 + β3x3

Call: lm(formula = yield ~ reactant.num * catalyst.num)
Coefficients:

Estimate Std.Error t value Pr(>|t|)
(Intercept) 27.5000 0.5713 48.135 3.84e-11***
reactant.num 4.1667 0.5713 7.293 8.44e-05***
catalyst.num -2.5000 0.5713 -4.376 0.00236 **
reactant.num:catalyst.num 0.8333 0.5713 1.459 0.18278

Residual standard error: 1.979 on 8 degrees of freedom
Multiple R-squared: 0.903, Adjusted R-squared: 0.8666
F-statistic: 24.82 on 3 and 8 DF, p-value: 0.0002093

y = 27.5 + 4.2x1 − 2.5x2 + 0.8x3

Note: x3 = x1 · x2.
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The 22 Design - Chemical process example
Since the influence of the interaction effect is not significance, we remove it
from the model:

Call: lm(formula = yield ~ reactant.num + catalyst.num)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 27.500 0.606 45.377 6.13e-12 ***
reactant.num 4.167 0.606 6.875 7.27e-05 ***
catalyst.num -2.500 0.606 -4.125 0.00258 **

Residual standard error: 2.099 on 9 degrees of freedom
Multiple R-squared: 0.8772, Adjusted R-squared: 0.8499
F-statistic: 32.14 on 2 and 9 DF, p-value: 7.971e-05

> anova(yield.lm_coded2,yield.lm_coded1)
Analysis of Variance Table
Model 1: yield ~ reactant.num + catalyst.num
Model 2: yield ~ reactant.num * catalyst.num
Res.Df RSS Df Sum of Sq F Pr(>F)

1 9 39.667
2 8 31.333 1 8.3333 2.1277 0.1828
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The 22 Design - Chemical process example

The linear regression model in natural factors levels:

Call: lm(formula = yield ~ reactant.num + catalyst.num)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 18.3333 3.0902 5.933 0.00022 ***
reactant.num 0.8333 0.1212 6.875 7.27e-05 ***
catalyst.num -5.0000 1.2121 -4.125 0.00258 **

Residual standard error: 2.099 on 9 degrees of freedom
Multiple R-squared: 0.8772, Adjusted R-squared: 0.8499
F-statistic: 32.14 on 2 and 9 DF, p-value: 7.971e-05

Conversion between Coded and Natural Variables:

ŷ = 27.5 + 4.2
(

Con − (Conl + Conh)/2
(Conh − Conl )/2

)
− 2.5

(
Cat − (Catl + Cath)/2

(Cath − Catl )/2

)
= 18.3 + 0.83 · Concentration − 5.00 · Catalyst

Concentration: Low = 15 and High = 25
Catalyst: Low = 1 and High = 2
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The 22 Design - Chemical process example
The linear regression model in natural factors levels can be used
to generate response surface plots.
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The 22 Design - Chemical process example
The linear regression model in natural factors levels can be used
to generate response contour plots.
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The 22 Design - Chemical process example

The model adequacy checking - normal plot of residuals.

+ perform all normality and homoscedasticity tests.
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The 23 Design
If we now consider three factors, A, B, and C, we obtain a 23

factorial design with eight treatment combinations that can be
displayed as a cube.
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The 23 Design
Geometric presentation of contrast corresponding to the main
effects and interactions in the 23 factorial design.
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The 23 Design

Geometric presentation of contrast corresponding to the main
effects and interactions in the 23 factorial design.
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The 23 Design

Three different notations used for the runs in the 2k design:

Run A B C Labels A B C
1 - - - (1) 0 0 0
2 + - - a 1 0 0
3 - + - b 0 1 0
4 + + - ab 1 1 0
5 - - + c 0 0 1
6 + - + ac 1 0 1
7 - + + bc 0 1 1
8 + + + abc 1 1 1

I ± notation is called Yates’s order.
I Lowercase letter label to identify the treatment

combinations.
I 1 and 0 denote high and low factor levels.
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The 23 Design

Algebraic Signs for Calculating Effects in the 23 Design:

Note that except for column I, every column has an equal num-
ber of + and − signs.
The product of any two columns yields a column in the table
(i.e. A × B = AB, AB × BC = AB2C = AC).
Orthogonality is an important property shared by all factorial de-
signs.
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The 23 Design

The estimation of average effects:
main effect of A: A = ȳA+ − ȳA−

= 1
4n (a + ab + ac + abc − (1) − b − c − bc)

main effect of B: B = ȳB+ − ȳB−

= 1
4n (b + ab + bc + abc − (1) − a − c − ac)

main effect of C: C = ȳC+ − ȳC−

= 1
4n (c + ac + bc + abc − (1) − a − b − ab)

interaction of AB: AB = 1
4n (abc + ab + c + (1) − a − b − ac − bc)

interaction of AC: AC = 1
4n (abc + ac + b + (1) − a − c − ab − bc)

interaction of BC: BC = 1
4n (abc + bc + a + (1) − b − b − ab − ac)

interaction of ABC: ABC = 1
4n (abc + a + b + c − ab − ac − bc − (1))
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The 23 Design - The Etch Plasma Experiment
The design factors are
I A: gap between electrodes in cm

Low (-1) 0.8 and High (+1) 1.2
I B: gas C2F6 flow in SCCM

Low (-1) 125 and High (+1) 200
I C: RF power applied to the cathode in W

Low (-1) 275 and High (+1) 325
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The 23 Design - Plasma Etch Rate Experiment
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The 23 Design - The Etch Plasma Experiment

Analysis of Variance results:

> summary(aov(etch~A*B*C))
Df Sum Sq Mean Sq F value Pr(>F)
A 1 41311 41311 18.339 0.002679 **
B 1 218 218 0.097 0.763911
C 1 374850 374850 166.411 1.23e-06 ***
A:B 1 2475 2475 1.099 0.325168
A:C 1 94403 94403 41.909 0.000193 ***
B:C 1 18 18 0.008 0.930849
A:B:C 1 127 127 0.056 0.818586
Residuals 8 18020 2253

Gap (A), Power (C) and its interaction are highly significant.
We remove other variables and compare new reduced model
with this one.
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The 23 Design - The Etch Plasma Experiment

Analysis of Variance results of reduced model and computed Lack of fit.

> summary(etch~A*C)
Df Sum Sq Mean Sq F value Pr(>F)

A 1 41311 41311 23.77 0.000382 ***
C 1 374850 374850 215.66 4.95e-09 ***
A:C 1 94403 94403 54.31 8.62e-06 ***
Residuals 12 20858 1738

Analysis of Variance Table
Model 1: etch ~ A * C
Model 2: etch ~ A * B * C
Res.Df RSS Df Sum of Sq F Pr(>F)

1 12 20858
2 8 18021 4 2837.2 0.3149 0.8604

Lack of fit is the difference between Residuals in reduced models and pure
error (residuals) in old model with all variables and interactions.
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The 23 Design - The Etch Plasma Experiment

Linear regression model results for coded (±1) variables.

Estimated effects are double of mentioned values.

Call: lm(formula = etch ~ A.num * B.num * C.num)

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 776.062 11.865 65.406 3.32e-12 ***
A.num -50.812 11.865 -4.282 0.002679 **
B.num 3.688 11.865 0.311 0.763911
C.num 153.062 11.865 12.900 1.23e-06 ***
A.num:B.num -12.437 11.865 -1.048 0.325168
A.num:C.num -76.812 11.865 -6.474 0.000193 ***
B.num:C.num -1.062 11.865 -0.090 0.930849
A.num:B.num:C.num 2.813 11.865 0.237 0.818586

Residual standard error: 47.46 on 8 degrees of freedom
Multiple R-squared: 0.9661, Adjusted R-squared: 0.9364
F-statistic: 32.56 on 7 and 8 DF, p-value: 2.896e-05
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The 23 Design - The Etch Plasma Experiment
Linear regression results for reduced model with coded (±1) variables.

Call: lm(formula = etch ~ A.num * C.num)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 776.06 10.42 74.458 < 2e-16 ***
A.num -50.81 10.42 -4.875 0.000382 ***
C.num 153.06 10.42 14.685 4.95e-09 ***
A.num:C.num -76.81 10.42 -7.370 8.62e-06 ***

Residual standard error: 41.69 on 12 degrees of freedom
Multiple R-squared: 0.9608, Adjusted R-squared: 0.9509
F-statistic: 97.91 on 3 and 12 DF, p-value: 1.054e-08

The proportion of total variability in etch rate that is explained by this reduced
model is

R2 = 1 − SSRes

SSTotal
=

SSModel

SSTotal
=

SSA + SSC + SSAC

SSTotal
=

510564
531422

= 0.961

It is smaller than for the full model, but the removing of the nonsignificant terms
from the full model is good for reducing the length of confidence intervals and
for predicting.
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The 23 Design - Plasma Etch Rate Experiment
The interaction plot.

interaction.plot(Gap.num,Power.num,etch,type="b",pch=19,
fixed=T,xlab="Gap in cm",ylab="Etch rate")
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The 23 Design - Plasma Etch Rate Experiment
The linear regression model in natural factors levels can be used to generate
response surface plots.

ŷ = β̂0 + β̂1x1 + β̂3x3 + β̂13x1x3 = 776.06 − 50.81x1 + 153.06x3 − 76.81x1x3
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The 23 Design - Plasma Etch Rate Experiment
The linear regression model in natural factors levels can be used
to generate response contour plots.
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The 23 Design - Plasma Etch Rate Experiment

Model Summary Statistics:

Standard error of model coefficients:

se(β̂) =

√
σ2

2nk =

√
MSE

2nk =

√
1738

16
=

41.69
4

= 10.42.

The standard errors of all model coefficients are equal because
the design is orthogonal.

Confidence interval on model coefficients:

β̂ − tα/2,dfE se(β̂) ≤ β ≤ β̂ + tα/2,dfE se(β̂),

where the degrees of freedom dfE on t are the number of DF for
Error.
dfE = N − p = 12, where N = 16 is the total number of runs
in the experiment and p = 4 is the number of parameters in th
regression model.
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The General 2k Factorial Design

In a general 2k Factorial Design will be

I k main effects
I
(k

2

)
two-factor interactions

I
(k

3

)
three-factor interactions

I
...

I 1 k-factor interaction
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The General 2k Factorial Design

> k=3
> plan2a <- FrF2(2^k, k, replications = 2, randomize = FALSE,

factor.names = c("A", "B", "C"))
> plan2a
run.no run.no. std.rp A B C
1 1 1.1 -1 -1 -1
2 2 2.1 1 -1 -1
3 3 3.1 -1 1 -1
4 4 4.1 1 1 -1
5 5 5.1 -1 -1 1
6 6 6.1 1 -1 1
7 7 7.1 -1 1 1
8 8 8.1 1 1 1
9 9 1.2 -1 -1 -1
10 10 2.2 1 -1 -1
11 11 3.2 -1 1 -1
12 12 4.2 1 1 -1
13 13 5.2 -1 -1 1
14 14 6.2 1 -1 1
15 15 7.2 -1 1 1
16 16 8.2 1 1 1
class=design, type= full factorial
NOTE: columns run.no and run.no.std.rp are annotation, not part of the data frame
result <- rnorm(16)
plan2a <- add.response(plan2a,result)
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Unreplicated 2k Factorial Designs

I These are 2k factorial designs with one observation at each corner of
the ”cube” and sometimes is called single replicated design.

I Very widely used type of design, especially in first planning and testing.
I If the factors are spaced too closely, it increases the chances that the

noise will overwhelm the signal in the data.
I More aggressive spacing is usually best.
I Lack of replication causes potential problems in statistical testing:

I With no replication, fitting the full model results in zero
degrees of freedom for error.

I Pooling high-order interactions to estimate error.
I Normal probability plotting of effects (Daniels, 1959).

Examples and further discussion in the next lesson.
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Today Exercise

Solve problems 6.1, 6.2.
(from D. C. Montgomery DAoE ed.8 - chapter 6)

01NEX - Lecture 05 36


